Showing 81 - 90 of 108
Copulas are extensively used for dependence modeling. In many cases the data does not reveal how the dependence can be modeled using a particular parametric copula. Nonparametric copulas do not share this problem since they are entirely data based. This paper proposes nonparametric estimation of...
Persistent link: https://www.econbiz.de/10008521080
Persistent link: https://www.econbiz.de/10008550166
The paper introduces a new nonparametric estimator of the spectral density that is given in smoothing the periodogram by the probability density of Beta random variable (Beta kernel). The estimator is proved to be bounded for short memory data, and diverges at the origin for long memory data....
Persistent link: https://www.econbiz.de/10008492572
This paper proposes a new nonparametric test for conditional independence, which is based on the comparison of Bernstein copula densities using the Hellinger distance. The test is easy to implement because it does not involve a weighting function in the test statistic, and it can be applied in...
Persistent link: https://www.econbiz.de/10008528557
The Gaussian kernel density estimator is known to have substantial problems for bounded random variables with high density at the boundaries. For i.i.d. data several solutions have been put forward to solve this boundary problem. In this paper we propose the gamma kernel estimator as density...
Persistent link: https://www.econbiz.de/10005008336
We propose a new nonparametric estimator for the density function of multivariate bounded data. As frequently observed in practice, the variables may be partially bounded (e.g., nonnegative) or completely bounded (e.g., in the unit interval). In addition, the variables may have a point mass. We...
Persistent link: https://www.econbiz.de/10005065413
This paper proposes a new nonparametric test for conditional independence, which is based on the comparison of Bernstein copula densities using the Hellinger distance. The test is easy to implement because it does not involve a weighting function in the test statistic, and it can be applied in...
Persistent link: https://www.econbiz.de/10005101068
Persistent link: https://www.econbiz.de/10005104598
In this paper we consider the nonparametric estimation for a density and hazard rate function for right censored -mixing survival time data using kernel smoothing techniques. Since survival times are positive with potentially a high concentration at zero, one has to take into account the bias...
Persistent link: https://www.econbiz.de/10005042900
Copulas are extensively used for dependence modeling. In many cases the data does not reveal how the dependence can be modeled using a particular parametric copula. Nonparametric copulas do not share this problem since they are entirely data based. This paper proposes nonparametric estimation of...
Persistent link: https://www.econbiz.de/10005043150