Showing 111 - 120 of 112,932
The prediction of financial distress has emerged as a significant concern over a prolonged period spanning more than half a century. This subject has garnered considerable attention owing to the precise outcomes derived from its predictive models. The main objective of this study is to predict...
Persistent link: https://www.econbiz.de/10014372938
We survey the nascent literature on machine learning in the study of financial markets. We highlight the best examples of what this line of research has to offer and recommend promising directions for future research. This survey is designed for both financial economists interested in grasping...
Persistent link: https://www.econbiz.de/10014349505
Purpose - For policymakers and participants of financial markets, predictions of trading volumes of financial indices are important issues. This study aims to address such a prediction problem based on the CSI300 nearby futures by using high-frequency data recorded each minute from the launch...
Persistent link: https://www.econbiz.de/10014497016
This paper proposes a novel theory, coined as Topological Tail Dependence Theory, that links the mathematical theory behind Persistent Homology (PH) and the financial stock market theory. This study also proposes a novel algorithm to measure topological stock market changes as well as the...
Persistent link: https://www.econbiz.de/10014514075
In this study, we analyzed the forecasting and nowcasting performance of a generalized regression neural network (GRNN). We provide evidence from Monte Carlo simulations for the relative forecast performance of GRNN depending on the data-generating process. We show that GRNN outperforms an...
Persistent link: https://www.econbiz.de/10014496850
The Lee-Carter model has become a benchmark in stochastic mortality modeling. However, its forecasting performance can be significantly improved upon by modern machine learning techniques. We propose a convolutional neural network architecture for mortality rate forecasting, empirically compare...
Persistent link: https://www.econbiz.de/10013243865
This paper aims to forecast the Market Risk premium (MRP) in the US stock market by applying machine learning techniques, namely the Multilayer Perceptron Network (MLP), the Elman Network (EN) and the Higher Order Neural Network (HONN). Furthermore, Univariate ARMA and Exponential Smoothing...
Persistent link: https://www.econbiz.de/10011454074
The paper contributes to the rare literature modeling term structure of crude oil markets. We explain term structure of crude oil prices using dynamic Nelson-Siegel model, and propose to forecast them with the generalized regression framework based on neural networks. The newly proposed...
Persistent link: https://www.econbiz.de/10011378719
Future market risk has always been a critical question in decision support processes. FORESIM is a simulation technique that models shipping markets (developed recently). In this paper we present the application of this technique in order to obtain useful information regarding future values of...
Persistent link: https://www.econbiz.de/10011661763
Persistent link: https://www.econbiz.de/10014546180