Showing 21 - 30 of 114,516
In recent years, support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a...
Persistent link: https://www.econbiz.de/10012966267
Economic policymaking relies upon accurate forecasts of economic conditions. Current methods for unconditional forecasting are dominated by inherently linear models that exhibit model dependence and have high data demands. We explore deep neural networks as an opportunity to improve upon...
Persistent link: https://www.econbiz.de/10012946449
In this paper we focus on analyzing the predictive accuracy of three different types of forecasting techniques, Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN), and Singular Spectral Analysis (SSA), used for predicting chaotic time series data. These techniques...
Persistent link: https://www.econbiz.de/10012947889
We employ neural network models to forecast the direction and the level of change in Istanbul Stock Exchange (ISE) Composite Index and 10 sector indices. We use 7 domestic and 15 international economic variables and stock indices. Three types of forecast methods were employed for each sector...
Persistent link: https://www.econbiz.de/10012951210
The paper contributes to the rare literature modeling term structure of crude oil markets. We explain term structure of crude oil prices using dynamic Nelson-Siegel model, and propose to forecast them with the generalized regression framework based on neural networks. The newly proposed...
Persistent link: https://www.econbiz.de/10013024184
A central consideration for the use of any pricing model is the ability to calibrate that model to market or historical prices. Whether the information needed by the model can be effectively implied from the data or not is one part of the calibration problem. However, in many applications, the...
Persistent link: https://www.econbiz.de/10012986486
Application of artificial neural networks for economic forecasting is described and empirically examined with Nestle financial reporting data. For the experiments, panel data of the exchange rates as well as trading profit, volume of sales, currency retranslations, and effects of exchange rate...
Persistent link: https://www.econbiz.de/10012903361
The Lee-Carter model is a basic approach to forecasting mortality rates of a single population. Although extensions of the Lee-Carter model to forecasting rates for multiple populations have recently been proposed, the structure of these extended models is hard to justify and the models are...
Persistent link: https://www.econbiz.de/10012909106
In many macroeconomic forecasting applications factor models are used to cope with large datasets. This study aligns variational autoencoders with macroeconomic factor modeling and proposes an extension to adapt this framework for forecasting exercises. Variational autoencoders are well suited...
Persistent link: https://www.econbiz.de/10013239712
We study the problem of obtaining an accurate forecast of the unemployment claims using online search data. The motivation for this study arises from the fact that there is a need for nowcasting or providing a reliable short-term estimate of the unemployment rate. The data regarding initial...
Persistent link: https://www.econbiz.de/10013243156