Showing 1 - 10 of 106,235
This paper develops Bayesian econometric methods for posterior inference in non-parametric mixed frequency VARs using additive regression trees. We argue that regression tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced...
Persistent link: https://www.econbiz.de/10012405305
This paper develops Bayesian econometric methods for posterior inference in non-parametric mixed frequency VARs using additive regression trees. We argue that regression tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced...
Persistent link: https://www.econbiz.de/10012501159
Persistent link: https://www.econbiz.de/10012991173
This paper considers Bayesian regression with normal and double-exponential priors as forecasting methods based on large panels of time series. We show that, empirically, these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range...
Persistent link: https://www.econbiz.de/10013317338
In this paper we reconsider large Bayesian Vector Autoregressions (BVAR) from the point of view of Bayesian Compressed Regression (BCR). First, we show that there are substantial gains in terms of out-of-sample forecasting by treating the problem as an error-in-variables formulation and...
Persistent link: https://www.econbiz.de/10014078868
We consider forecast combination and, indirectly, model selection for VAR models when there is uncertainty about which variables to include in the model in addition to the forecast variables. The key difference from traditional Bayesian variable selection is that we also allow for uncertainty...
Persistent link: https://www.econbiz.de/10003581516
Dynamic stochastic general equilibrium models have recently become standard tools for policy-oriented analyses. Nevertheless, their forecasting properties are still barely explored. We fill this gap by comparing the quality of real-time forecasts from a richly-specified DSGE model to those from...
Persistent link: https://www.econbiz.de/10003963819
The predictive likelihood is of particular relevance in a Bayesian setting when the purpose is to rank models in a forecast comparison exercise. This paper discusses how the predictive likelihood can be estimated for any subset of the observable variables in linear Gaussian state-space models...
Persistent link: https://www.econbiz.de/10010412361
This paper develops methods for automatic selection of variables in Bayesian vector autoregressions (VARs) using the Gibbs sampler. In particular, I provide computationally efficient algorithms for stochastic variable selection in generic linear and nonlinear models, as well as models of large...
Persistent link: https://www.econbiz.de/10013070239
Adding multivariate stochastic volatility of a flexible form to large Vector Autoregressions (VARs) involving over a hundred variables has proved challenging due to computational considerations and over-parameterization concerns. The existing literature either works with homoskedastic models or...
Persistent link: https://www.econbiz.de/10012917923