Showing 1 - 10 of 175
We study the impact of parameter and model uncertainty on the left-tail of predictive densities and in particular on VaR forecasts. To this end, we evaluate the predictive performance of several GARCH-type models estimated via Bayesian and maximum likelihood techniques. In addition to individual...
Persistent link: https://www.econbiz.de/10012903836
Persistent link: https://www.econbiz.de/10011860735
We consider a logistic transform of the monthly US unemployment rate. For this time series, a pseudo out-of-sample forecasting competition is held between linear and nonlinear models and averages of these models. To combine predictive densities, we use two complementary methods: Bayesian model...
Persistent link: https://www.econbiz.de/10013031521
Persistent link: https://www.econbiz.de/10003841976
Persistent link: https://www.econbiz.de/10013278094
This paper proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation to the...
Persistent link: https://www.econbiz.de/10010325655
Strategic choices for efficient and accurate evaluation of marginal likelihoods by means of Monte Carlo simulation methods are studied for the case of highly non-elliptical posterior distributions. A comparative analysis is presented of possible advantages and limitations of different simulation...
Persistent link: https://www.econbiz.de/10010325793
This discussion paper led to a publication in 'Computational Statistics & Data Analysis' 56(11), pp. 3398-1414.Important choices for efficient and accurate evaluation of marginal likelihoods by means of Monte Carlo simulation methods are studied for the case of highly non-elliptical posterior...
Persistent link: https://www.econbiz.de/10010325939
This note presents the R package bayesGARCH (Ardia, 2007) which provides functions for the Bayesian estimation of the parsimonious and effective GARCH(1,1) model with Student-t innovations. The estimation procedure is fully automatic and thus avoids the tedious task of tuning a MCMC sampling...
Persistent link: https://www.econbiz.de/10010325986
This paper presents the R package AdMit which provides functions to approximate and sample from a certain target distribution given only a kernel of the target density function. The core algorithm consists in the function AdMit which fits an adaptive mixture of Student-t distributions to the...
Persistent link: https://www.econbiz.de/10010326034