Showing 121 - 130 of 126,919
A flexible predictive density combination is introduced for large financial data sets which allows for model set incompleteness. Dimension reduction procedures that include learning allocate the large sets of predictive densities and combination weights to relatively small subsets. Given the...
Persistent link: https://www.econbiz.de/10013332662
In this paper, we propose a new procedure for unconditional and conditional forecasting in agent-based models. The proposed algorithm is based on the application of amortized neural networks and consists of two steps. The first step simulates artificial datasets from the model. In the second...
Persistent link: https://www.econbiz.de/10014346187
This paper provides a novel approach to forecasting time series subject to discrete structural breaks. We propose a Bayesian estimation and prediction procedure that allows for the possibility of new breaks over the forecast horizon, taking account of the size and duration of past breaks (if...
Persistent link: https://www.econbiz.de/10002177070
This paper provides a novel approach to forecasting time series subject to discrete structural breaks. We propose a Bayesian estimation and prediction procedure that allows for the possibility of new breaks over the forecast horizon, taking account of the size and duration of past breaks (if...
Persistent link: https://www.econbiz.de/10011450047
The problem of forecasting from vector autoregressive models has attracted considerable attention in the literature. The most popular non-Bayesian approaches use large sample normal theory or the bootstrap to evaluate the uncertainty associated with the forecast. The literature has concentrated...
Persistent link: https://www.econbiz.de/10013154328
In this paper, we provide a novel way to estimate the out-of-sample predictive ability of a trading rule. Usually, this ability is estimated using a sample-splitting scheme, true out-of-sample data being rarely available. We argue that this method makes poor use of the available data and creates...
Persistent link: https://www.econbiz.de/10012987735
In this paper we introduce tests of Likelihood Ratio types for one sided multivariate hypothesis to evaluate the null that a parsimonious model performs equally well as a small number of models which nest the benchmark. We show that the limiting distributions of the test statistics are non...
Persistent link: https://www.econbiz.de/10014171247
This paper will outline the functionality available in the CovRegpy package for actuarial practitioners, wealth managers, fund managers, and portfolio analysts written in Python 3.7. The major contributions of CovRegpy can be found in the CovRegpy_DCC.py, CovRegpy_IFF.py, CovRegpy_RCR.py,...
Persistent link: https://www.econbiz.de/10014253907
Empirical volatility studies have discovered nonstationary, long-memory dynamics in the volatility of the stock market and foreign exchange rates. This highly persistent, infinite variance - but still mean reverting - behavior is commonly found with nonparametric estimates of the fractional...
Persistent link: https://www.econbiz.de/10011382237
We provide a simulation smoother to a exible state-space model with lagged states and lagged dependent variables. Qian (2014) has introduced this state-space model and proposes a fast Kalman filter with time-varying state dimension in the presence of missing observations in the data. In this...
Persistent link: https://www.econbiz.de/10012869992