Showing 61 - 70 of 794,685
We develop a novel method to impose constraints on univariate predictive regressions of stock returns. Unlike the previous approaches in the literature, we implement our constraints directly on the predictor, setting it to zero whenever its value falls below the variable's past 12-month high....
Persistent link: https://www.econbiz.de/10012900845
Bayesian investor. We develop a constrained parameter learning approach for sequential estimation allowing for belief revisions …
Persistent link: https://www.econbiz.de/10014348997
There is evidence that volatility forecasting models that use intraday data provide better forecast accuracy as compared with that delivered by the models that use daily data. Exactly how much better is still unknown. The present paper fills this gap in the literature and extends previous...
Persistent link: https://www.econbiz.de/10012935461
Can the degree of predictability found in the data be explained by existing asset pricing models? We provide two theoretical upper bounds on the R-squares of predictive regressions. Using data on the market and component portfolios, we find that the empirical R-squares are significantly greater...
Persistent link: https://www.econbiz.de/10012973313
This paper proposes a two-state predictive regression model and shows that stock market 12-month return (TMR), the time-series momentum predictor of Moskowitz, Ooi, and Pedersen (2012), forecasts the aggregate stock market negatively in good times and positively in bad times. The out-of-sample...
Persistent link: https://www.econbiz.de/10012974764
Persistent link: https://www.econbiz.de/10010191413
Using data on international, on-line media coverage and tone of the Brexit referendum, we test whether it is media coverage or tone to provide the largest forecasting performance improvements in the prediction of the conditional variance of weekly FTSE 100 stock returns. We find that versions of...
Persistent link: https://www.econbiz.de/10012487265
We develop a penalized two-pass regression with time-varying factor loadings. The penalization in the first pass enforces sparsity for the time-variation drivers while also maintaining compatibility with the no arbitrage restrictions by regularizing appropriate groups of coefficients. The second...
Persistent link: https://www.econbiz.de/10012487589
In this paper, we apply machine learning to forecast the conditional variance of long-term stock returns measured in excess of different benchmarks, considering the short- and long-term interest rate, the earnings-by-price ratio, and the inflation rate. In particular, we apply in a two-step...
Persistent link: https://www.econbiz.de/10012127861
We study the relationship between conditional quantiles of returns and the long-, medium- and short-term volatility in a portfolio of financial assets. We argue that the combination of quantile panel regression and wavelet decomposition of the volatility time series provides us with new insights...
Persistent link: https://www.econbiz.de/10011722181