Showing 101 - 110 of 144
In this paper we establish several relations between convex order, variance order, and comonotonicity. In the first part, we extend Cheung (2008b) to show that when the marginal distributions are fixed, a sum with maximal variance is in fact a comonotonic sum. Thus the convex upper bound is...
Persistent link: https://www.econbiz.de/10012757675
In this article, we study two broad classes of convex order related optimal insurance decision problems, in which the objective function or the premium valuation is a general functional of the expectation, Value-at-Risk and Average Value-at-Risk of the loss variables. These two classes of...
Persistent link: https://www.econbiz.de/10013023937
In this paper, we extend the concept of mutual exclusivity proposed by Dhaene and Denuit (1999) to its tail counterpart and baptise this new dependency structure as tail mutual exclusivity. Probability levels are first specified for each component of the random vector. Under this dependency...
Persistent link: https://www.econbiz.de/10013027172
We revisit the problem of minimizing a separable convex function with a linear constraint and box constraints. This optimization problem arises naturally in many applications in economics, insurance, and finance. Existing literature exclusively tackles this problem by using the traditional...
Persistent link: https://www.econbiz.de/10013060657
Comonotonicity provides a convenient convex upper bound for a sum of random variables with arbitrary dependence structure. Improved convex upper bound was introduced via conditioning by Kaas et al. [Kaas, R., Dhaene, J., Goovaerts, M., 2000. Upper and lower bounds for sums of random variables....
Persistent link: https://www.econbiz.de/10005365528
It is well known that if a random vector with given marginal distributions is comonotonic, it has the largest sum with respect to the convex order. In this paper, we prove that the converse is also true, provided that each marginal distribution is continuous.
Persistent link: https://www.econbiz.de/10005374686
Persistent link: https://www.econbiz.de/10005374972
In this paper, we study stochastic orders of scalar products of random vectors. Based on the study of Ma [Ma, C., 2000. Convex orders for linear combinations of random variables. J. Statist. Plann. Inference 84, 11-25], we first obtain more general conditions under which linear combinations of...
Persistent link: https://www.econbiz.de/10005375081
Persistent link: https://www.econbiz.de/10005375263
In this paper, we study the problems of optimal allocation of policy limits and deductibles. Several objective functions are considered: maximizing the expected utility of wealth assuming the losses are independent, minimizing the expected total retained loss and maximizing the expected utility...
Persistent link: https://www.econbiz.de/10005375439