Showing 41 - 50 of 117,562
This paper compares a nonparametric generalized least squares (NPGLS) estimator to parametric feasible GLS (FGLS) and variants of heteroscedasticity robust standard error estimators (HRSEs) in an applied setting. Given myriad alternative HRSEs, a clear consensus on which version to use does not...
Persistent link: https://www.econbiz.de/10013077989
In this study, we focus on a generalized nonparametric scalar-on-function regression model for heterogeneously distributed and strongly mixing data. We provide almost complete convergence rates for the local linear estimator of the regression function. We show that, under our conditions, the...
Persistent link: https://www.econbiz.de/10013220142
This paper explores a semiparametric version of a time-varying regression, where a subset of the regressors have a fixed coefficient and the rest a time-varying one. We provide an estimation method and establish associated theoretical properties of the estimates and standard errors in extended...
Persistent link: https://www.econbiz.de/10015192982
We propose a new estimator for nonparametric regression based on local likelihood estimation using an estimated error score function obtained from the residuals of a preliminary nonparametric regression. We show that our estimator is asymptotically equivalent to the infeasible local maximum...
Persistent link: https://www.econbiz.de/10012771041
We introduce a kernel-based estimator of the density function and regression function for data that have been grouped into family totals. We allow for a common intra-family component but require that observations from different families be in dependent. We establish consistency and asymptotic...
Persistent link: https://www.econbiz.de/10012771053
In this paper, the regression discontinuity design (RDD) is generalized to account for differences in observed covariates X in a fully nonparametric way. It is shown that the treatment effect can be estimated at the rate for one-dimensional nonparametric regression irrespective of the dimension...
Persistent link: https://www.econbiz.de/10012776099
We consider nonparametric identification and estimation in a nonseparable model where a continuous regressor of interest is a known, deterministic, but kinked function of an observed assignment variable. This design arises in many institutional settings where a policy variable (such as weekly...
Persistent link: https://www.econbiz.de/10011345869
This paper is motivated by our attempt to answer an empirical question: how is private health insurance take-up in Australia affected by the income threshold at which the Medicare Levy Surcharge (MLS) kicks in? We propose a new difference de-convolution kernel estimator for the location and size...
Persistent link: https://www.econbiz.de/10011309141
This paper discusses nonparametric kernel regression with the regressor being a d-dimensional ß-null recurrent process in presence of conditional heteroscedasticity. We show that the mean function estimator is consistent with convergence rate p n(T)hd, where n(T) is the number of regenerations...
Persistent link: https://www.econbiz.de/10011297654
This note argues that nonparametric regression not only relaxes functional form assumptions vis-a-vis parametric regression, but that it also permits endogenous control variables. To control for selection bias or to make an exclusion restriction in instrumental variables regression valid,...
Persistent link: https://www.econbiz.de/10013317591