Showing 1 - 10 of 80,829
This paper develops a time-varying coefficient spatial autoregressive panel data model with the individual fixed …
Persistent link: https://www.econbiz.de/10012859750
spatial panel data model, with fixed effects, time-varying covariates, and spatially correlated errors. We introduce a new … spatial panel data model with fixed effects and T = 2, the saddlepoint approximation yields accuracy improvements over the …
Persistent link: https://www.econbiz.de/10012003171
In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to a spatial autoregressive model that has a spatial moving average process in the disturbance term (for short SARMA (1,1)). First, we...
Persistent link: https://www.econbiz.de/10012974451
In the presence of heteroskedasticity, conventional test statistics based on the ordinary least square estimator lead to incorrect inference results for the linear regression model. Given that heteroskedasticity is common in cross-sectional data, the test statistics based on various forms of...
Persistent link: https://www.econbiz.de/10012931988
We consider a spatial econometric model containing a spatial lag in the dependent variable and the disturbance term with an unknown form of heteroskedasticity in innovations. We first prove that the maximum likelihood (ML) estimator for spatial autoregressive models is generally inconsistent...
Persistent link: https://www.econbiz.de/10014160295
In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to spatial models that impose a spatial moving average process for the disturbance term. First, we determine the set of best linear and...
Persistent link: https://www.econbiz.de/10014145971
This paper develops an estimator for higher-order spatial autoregressive panel data error component models with spatial …
Persistent link: https://www.econbiz.de/10003808637
Persistent link: https://www.econbiz.de/10009242395
One important goal of this study is to develop a methodology of inference for a widely used Cliff-Ord type spatial model containing spatial lags in the dependent variable, exogenous variables, and the disturbance terms, while allowing for unknown heteroskedasticity in the innovations. We first...
Persistent link: https://www.econbiz.de/10003790570
In this paper we specify a linear Cliff and Ord-type spatial model. The model allows for spatial lags in the dependent variable, the exogenous variables, and disturbances. The innovations in the disturbance process are assumed to be heteroskedastic with an unknown form. We formulate a multi-step...
Persistent link: https://www.econbiz.de/10003792846