Showing 141 - 147 of 147
In the Supply-Use (or Make-Use) input-output model, “product-technology” (PT) or “fixed-industry-sales-structure” (FISS) assumptions are more widely adopted (SNA, Eurostat) for deriving symmetric input-output tables (SIOT) than “industry-technology” or...
Persistent link: https://www.econbiz.de/10010675531
We discuss each of the recommendations made by Hochberg et al. (2009) to prevent the “tragedy of the reviewer commons”. Having scientific journals share a common database of reviewers would be to recreate a bureaucratic organization, where extra-scientific considerations prevailed....
Persistent link: https://www.econbiz.de/10010675533
[eng] Input-output matrices and structural analysis are applied to the analysis and forecast of consequences of offensive actions in the case of multiproduct multimarket large firms. [fre] Les matrices entrées-sorties et l'analyse structurale sont appliquées à l'analyse et à la prévision...
Persistent link: https://www.econbiz.de/10008607721
[fre] On répond ici aux partisans du rejet du modèle d'offre dominante en analyse input-output et en particulier à A. Torre (Revue économique, 5 (44), p. 951-970). Tout d'abord les hypothèses de demande dominante (Leontief) et d'offre domi­nante (Ghosh) sont symétriques et incompatibles,...
Persistent link: https://www.econbiz.de/10008614528
(VA)Pressure to change the academic reviewing system is growing. We discuss two groups of proposals that introducing market mechanisms. First, Prüfer and Zetland (2009), based on Havrilesky (1975), create an auction system: manuscripts are submitted and auctioned to editors in “academic...
Persistent link: https://www.econbiz.de/10011096313
Biproportional methods are used to update matrices: the projection of a matrix Z to give it the column and row sums of another matrix is R Z S, where R and S are diagonal and secure the constraints of the problem (R and S have no signification at all because they are not identified). However,...
Persistent link: https://www.econbiz.de/10005391268
Biproportional methods project a matrix <Emphasis Type="Bold">A to give it the column and row sums of another matrix; the result is <Emphasis Type="Bold">R A S, where <Emphasis Type="Bold">R and <Emphasis Type="Bold">S are diagonal matrices. As <Emphasis Type="Bold">R and <Emphasis Type="Bold">S are not identified, one must normalize them, even after computing, that is, ex post. This article starts from the idea developed in...</emphasis></emphasis></emphasis></emphasis></emphasis></emphasis>
Persistent link: https://www.econbiz.de/10005391343