Showing 41 - 50 of 51
A variety of complications arise when imperfect measurements, W, are observed in place of a true variable of interest, X. In the context of linear and non-linear regression models where X is a covariate, regression parameter estimators obtained when W is substituted for X may be substantially...
Persistent link: https://www.econbiz.de/10009431214
Considerable recent interest has focused on doubly robust estimatorsfor a population mean response in the presence of incomplete data,which involve models for both the propensity score and the regressionof outcome on covariates. The ``usual" doubly robust estimator mayyield severely biased...
Persistent link: https://www.econbiz.de/10009431215
The accelerated failure time (AFT) model is a popular model for time-to-event data. It provides a useful alternative when the proportional hazards assumption is in question and it provides an intuitive linear regression interpretation where the logarithm of the survival time is regressed on the...
Persistent link: https://www.econbiz.de/10009431218
In many clinical studies, researchers are mainly interested in studying the effects of some prognostic factors on the hazard of failure from a specific cause while individuals may failure from multiple causes. This leads to a competing risks problem. Often, due to various reasons such as finite...
Persistent link: https://www.econbiz.de/10009431243
In many longitudinal studies, it is of interest to characterize the relationship between a time-to-event (e.g. survival) and time-dependent and time-independent covariates. Time-dependent covariates are generally observed intermittently and with error.For a single time-dependent covariate, a...
Persistent link: https://www.econbiz.de/10009431245
There are two topics in this dissertation. The first topic is 'Smoothing Parameter Selection in Nonparametric Generalized Linear Models via Sixth-order Laplace Approximation' and the second topic is 'Smoothing Spline-based Score Tests for Proportional Hazards Models'.We present a new approach...
Persistent link: https://www.econbiz.de/10009431282
In many studies, a primary endpoint and longitudinal measures of a continuous response are collected for each participant along with other covariates, and the association between the primary endpoint and features of the longitudinal profiles is of interest. One challenge is that the features of...
Persistent link: https://www.econbiz.de/10009431291
Statistical models involving latent variables are widely used in many areas of applications, such as biomedical science and social science. When likelihood-based parametric inferential methods are used to make statistical inference, certain distributional assumptions on the latent variables are...
Persistent link: https://www.econbiz.de/10009431306
Model selection is important for longitudinal data analysis. But up to date little work has been done on variable selection for generalized linear mixed models (GLMM). In this paper we propose and study a class of variable selection methods. Full likelihood (FL) approach is proposed for...
Persistent link: https://www.econbiz.de/10009431308
Parametric estimation is complicated when data are measured with error. The problem of regression modeling when one or more covariates are measured with error is considered in this paper. It is often the case that, evaluated at the observed error-prone data, the unbiased true-data estimating...
Persistent link: https://www.econbiz.de/10009431321