Showing 171 - 180 of 171,198
Using a unique dataset of 22.5 million news articles from the Dow Jones Newswires Archive, we perform an in depth real-time out-of-sample forecasting comparison study with one of the most widely used data sets in the newer forecasting literature, namely the FRED-MD dataset. Focusing on U.S. GDP,...
Persistent link: https://www.econbiz.de/10012304069
, hatten sie nach der Finanzkrise Schwierigkeiten ihre Profitabilität zu halten. Profitabilität stellt einen wichtigen …
Persistent link: https://www.econbiz.de/10011700721
We investigate various statistical methods for forecasting risky choices and identify important decision predictors. Subjects (n=44) are presented a series of 50/50 gambles that each involves a potential gain and a potential loss, and subjects can choose to either accept or reject a displayed...
Persistent link: https://www.econbiz.de/10011964372
This paper constructs a leading macroeconomic indicator from microeconomic data using recent machine learning techniques. Using tree-based methods, we estimate probabilities of default for publicly traded non-financial firms in the United States. We then use the cross-section of out-of-sample...
Persistent link: https://www.econbiz.de/10012182392
FinTech online lending to consumers has grown rapidly in the post-crisis era. As argued by its advocates, one key advantage of FinTech lending is that lenders can predict loan outcomes more accurately by employing complex analytical tools, such as machine learning (ML) methods. This study...
Persistent link: https://www.econbiz.de/10012135725
This paper develops textual sentiment measures for China's stock market by extracting the textual tone of 60 million messages posted on a major online investor forum in China from 2008 to 2018. We conduct sentiment extraction by using both conventional dictionary methods based on customized word...
Persistent link: https://www.econbiz.de/10012125620
This research aims at exploring whether simple trading strategies developed using state-ofthe-art Machine Learning (ML) algorithms can guarantee more than the risk-free rate of return or not. For this purpose, the direction of S&P 500 Index returns on every 6th day (SPYRETDIR6) and magnitude of...
Persistent link: https://www.econbiz.de/10012432999
Machine Learning models are often considered to be "black boxes" that provide only little room for the incorporation of theory (cf. e.g. Mukherjee, 2017; Veltri, 2017). This article proposes so-called Dynamic Factor Trees (DFT) and Dynamic Factor Forests (DFF) for macroeconomic forecasting, which...
Persistent link: https://www.econbiz.de/10012172506
The crisis periods of the past decades have highlighted the difficulty of forecasting economic indicators due to increased non-linearity and rapidly changing dynamics. To address this challenge, we introduce the Transform-Sparsify-Forecast (TSF) framework. The TSF framework first applies...
Persistent link: https://www.econbiz.de/10014545317
Electricity price forecasting has become a crucial element for both private and public decision-making. This importance has been growing since the wave of deregulation and liberalization of energy sector worldwide late 1990s. Given these facts, this paper tries to come up with a precise and...
Persistent link: https://www.econbiz.de/10012999245