Showing 11 - 20 of 473,628
We examine machine learning and factor-based portfolio optimization. We find that factors based on autoencoder neural networks exhibit a weaker relationship with commonly used characteristic-sorted portfolios than popular dimensionality reduction techniques. Machine learning methods also lead to...
Persistent link: https://www.econbiz.de/10013219036
We propose a statistical model of differences in beliefs in which heterogeneous investors are represented as different machine learning model specifications. Each investor forms return forecasts from their own specific model using data inputs that are available to all investors. We measure...
Persistent link: https://www.econbiz.de/10014337816
With approximately 900 million observations we conduct, to our knowledge, the largest study ever of intraday stock return predictability using machine learning techniques finding consistent out-of-sample predictability across market, sector, and individual stock returns at various time horizons....
Persistent link: https://www.econbiz.de/10014349804
Using high-frequency intraday data, we construct, test and model seven new realized volatility estimators for six international equity indices. We detect jumps in these estimators, construct the jump components of volatility and perform various tests on their properties. Then we use the class of...
Persistent link: https://www.econbiz.de/10013029279
We propose a new class of performance measures for Hedge Fund (HF) returns based on a family of empirically identifiable stochastic discount factors (SDFs). The SDF-based measures incorporate no-arbitrage pricing restrictions and naturally embed information about higher-order mixed moments...
Persistent link: https://www.econbiz.de/10012905264
This paper develops textual sentiment measures for China's stock market by extracting the textual tone of 60 million messages posted on a major online investor forum in China from 2008 to 2018. We conduct sentiment extraction by using both conventional dictionary methods based on customized word...
Persistent link: https://www.econbiz.de/10012125620
For stock market predictions, the essence of the problem is usually predicting the magnitude and direction of the stock price movement as accurately as possible. There are different approaches (e.g., econometrics and machine learning) for predicting stock returns. However, it is non-trivial to...
Persistent link: https://www.econbiz.de/10013305881
The aim of this paper is to assess the effectiveness and risk in the stock exchange market in Central and Eastern Europe countries (CEE) in view of the largest stock exchanges: NYSE2‑LSE‑HKSE2. The implementation of this objective was based on an analysis of basic stock market indicators and...
Persistent link: https://www.econbiz.de/10012024103
We frame linear factor models for asset pricing in a machine learning context and consider a numerical comparison of their performance against ordinary least squares linear regression over a dataset of anomaly portfolios. Specific regression models involved in the comparison include regularized...
Persistent link: https://www.econbiz.de/10013245462
We establish the out-of-sample predictability of monthly exchange rate changes via machine learning techniques based on 70 predictors capturing country characteristics, global variables, and their interactions. To guard against overfitting, we use the elastic net to estimate a high-dimensional...
Persistent link: https://www.econbiz.de/10012847704