Showing 61 - 70 of 154
Persistent link: https://www.econbiz.de/10014478803
Persistent link: https://www.econbiz.de/10014427624
An important and widely used class of semiparametric models is formed by the varying-coefficient models. Although the varying coefficients are traditionally assumed to be smooth functions, the varying-coefficient model is considered here with the coefficient functions containing a finite set of...
Persistent link: https://www.econbiz.de/10012960538
A class of two-step robust regression estimators that achieve a high relative efficiency for data from light-tailed, heavy-tailed, and contaminated distributions irrespective of the sample size is proposed and studied. In particular, the least weighted squares (LWS) estimator is combined with...
Persistent link: https://www.econbiz.de/10008864193
The linear quantile regression estimator is very popular and widely used. It is also well known that this estimator can be very sensitive to outliers in the explanatory variables. In order to overcome this disadvantage, the usage of the least trimmed quantile regression estimator is proposed to...
Persistent link: https://www.econbiz.de/10011056380
The panel-data regression models are frequently applied to micro-level data, which often suffer from data contamination, erroneous observations, or unobserved heterogeneity. Despite the adverse effects of outliers on classical estimation methods, there are only a few robust estimation methods...
Persistent link: https://www.econbiz.de/10011056466
We will study causal relationships of a known form between random variables. Given a model, we distinguish one or more dependent (endogenous) variables Y = (Y1, . . . , Yl), l ∈ N, which are explained by a model, and independent (exogenous, explanatory) variables X = (X1, . . . ,Xp), p ∈ N,...
Persistent link: https://www.econbiz.de/10010296407
Many methods of computational statistics lead to matrix-algebra or numerical- mathematics problems. For example, the least squares method in linear regression reduces to solving a system of linear equations. The principal components method is based on finding eigenvalues and eigenvectors of a...
Persistent link: https://www.econbiz.de/10010296419
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy tailed distributions. We show that the recently proposed MAVE and OPG methods by Xia et al. (2002) allow us to make them robust in a relatively straightforward way...
Persistent link: https://www.econbiz.de/10010296438
Persistent link: https://www.econbiz.de/10010309973