Showing 51 - 60 of 787,013
We develop a methodology of parametric modeling of time series dynamics when the underlying loss function is linear-exponential (Linex). We propose to directly model the dynamics of the conditional expectation that determines the optimal predictor. The procedure hinges on the exponential quasi...
Persistent link: https://www.econbiz.de/10014054441
This paper introduces a parsimonious and yet flexible semiparametric model to forecast financial volatility. The new model extends the linear nonnegative autoregressive model of Barndorff-Nielsen and Shephard (2001) and Nielsen and Shephard (2003) by way of a power transformation. It is...
Persistent link: https://www.econbiz.de/10012863889
penalties. Our asymptotic theory allows non-parametric distributions for martingale difference errors and idiosyncratic random …
Persistent link: https://www.econbiz.de/10012822472
This paper proposes a simple technical approach for the analytical derivation of Point-in-Time PD (probability of default) forecasts, with minimal data requirements. The inputs required are the current and future Through-the-Cycle PDs of the obligors, their last known default rates, and a...
Persistent link: https://www.econbiz.de/10012856161
We propose a new decomposition of the realized covariance matrix into components based on the signs of the underlying high-frequency returns. Under an asymptotic setting in which the sampling interval goes to zero, we derive the asymptotic properties of the resulting realized semicovariance...
Persistent link: https://www.econbiz.de/10012116691
This paper proposes a generalization of the class of realized semivariance and semicovariance measures introduced by Barndorff-Nielsen, Kinnebrock and Shephard (2010) and Bollerslev, Li, Patton and Quaedvlieg (2020a) to allow for a finer decomposition of realized (co)variances. The new "realized...
Persistent link: https://www.econbiz.de/10012249756
We develop a new targeted maximum likelihood estimation method that provides improved forecasting for misspecified linear autoregressive models. The method weighs data points in the observed sample and is useful in the presence of data generating processes featuring structural breaks, complex...
Persistent link: https://www.econbiz.de/10012416341
In this chapter, we discuss the use of mixed frequency models and diffusion index approximation methods in the context of prediction. In particular, select recent specification and estimation methods are outlined, and an empirical illustration is provided wherein U.S. unemployment forecasts are...
Persistent link: https://www.econbiz.de/10012974170
In recent years, an impressive body or research on predictive accuracy testing and model comparison has been published in the econometrics discipline. Key contributions to this literature include the paper by Diebold and Mariano (DM: 1995) that sets the groundwork for much of the subsequent work...
Persistent link: https://www.econbiz.de/10013079051
The study determines if information extracted from a big data set that includes limit order book (LOB) and Dow Jones corporate news can help to improve realised volatility forecasting for 23 NASDAQ tickers over the sample from 28 June 2007 to 17 November 2016. The out-of-sample forecasting...
Persistent link: https://www.econbiz.de/10012824203