Showing 1 - 10 of 703,188
Persistent link: https://www.econbiz.de/10009722696
The predictive likelihood is of particular relevance in a Bayesian setting when the purpose is to rank models in a forecast comparison exercise. This paper discusses how the predictive likelihood can be estimated for any subset of the observable variables in linear Gaussian state-space models...
Persistent link: https://www.econbiz.de/10010412361
To simultaneously consider mixed-frequency time series, their joint dynamics, and possible structural changes, we introduce a time-varying parameter mixed-frequency VAR. To keep our approach from becoming too complex, we implement time variation parsimoniously: only the intercepts and a common...
Persistent link: https://www.econbiz.de/10011903709
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear, non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10013005987
We introduce a high-dimensional structural time series model, where co-movement between the components is due to common factors. A two-step estimation strategy is presented, which is based on principal components in differences in a first step and state space methods in a second step. The...
Persistent link: https://www.econbiz.de/10011309972
Persistent link: https://www.econbiz.de/10014288373
We consider unobserved components time series models where the components are stochastically evolving over time and are subject to stochastic volatility. It enables the disentanglement of dynamic structures in both the mean and the variance of the observed time series. We develop a simulated...
Persistent link: https://www.econbiz.de/10011809984
We analyze the construction of multivariate forecasting densities based on conditional models for each variable, given the other variables; a joint predictive density is obtained by iteratively simulating from the conditional models. This idea has been pursued in the context of missing data...
Persistent link: https://www.econbiz.de/10013093948
By means of wavelet transform a time series can be decomposed into a time dependent sum of frequency components. As a result we are able to capture seasonalities with time-varying period and intensity, which nourishes the belief that incorporating the wavelet transform in existing forecasting...
Persistent link: https://www.econbiz.de/10003966651
In this paper we study what professional forecasters actually explain. We use spectral analysis and state space modeling to decompose economic time series into a trend, a business-cycle, and an irregular component. To examine which components are captured by professional forecasters we regress...
Persistent link: https://www.econbiz.de/10011305773