A critical overview of privacy-preserving approaches for collaborative forecasting
Year of publication: |
2021
|
---|---|
Authors: | Gonçalves, Carla ; Bessa, Ricardo J. ; Pinson, Pierre |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 37.2021, 1, p. 322-342
|
Subject: | Vector autoregression | Forecasting | Time series | Privacy-preserving | ADMM | Theorie | Theory | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis |
Description of contents: | Description [doi.org] |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Erratum enthalten in: International journal of forecasting, Volume 37, issue 3 (July/September 2021), Seite 1321-1322 |
Other identifiers: | 10.1016/j.ijforecast.2020.06.003 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Large vector autoregressions with asymmetric priors
Carriero, Andrea, (2015)
-
Forecasting GDP growth using mixed-frequency models with switching regimes
Barsoum, Fady, (2015)
-
Factor-augmented VARMA models with macroeconomic applications
Dufour, Jean-Marie, (2013)
- More ...
-
Forecasting : theory and practice
Petropoulos, Fotios, (2022)
-
Silva, João, (2018)
-
Wind Power Forecasting in U.S. Electricity Markets
Botterud, Audun, (2010)
- More ...