A Discrete Time Equivalent Martingale Measure
An equivalent martingale measure selection strategy for discrete time, continuous state, asset price evolution models is proposed. The minimal martingale law is shown to generally fail to produce a probability law in this context. The proposed strategy, termed the extended Girsanov principle, performs a multiplicative decomposition of asset price movements into a predictable and martingale component with the measure change identifying the discounted asset price process to the martingale component. However, unlike the minimal martingale law, the resulting martingale law of the extended Girsanov principle leads to weak form efficient price processes. It is shown that the proposed measure change is relevant for economies in which investors adopt hedging strategies that minimize the variance of a risk adjusted discounted cost of hedging that uses risk adjusted asset prices in calculating hedging returns. Risk adjusted prices deflate asset prices by the asset's excess return. The explicit form of the change of measure density leads to tractable econometric strategies for testing the validity of the extended Girsanov principle. A number of interesting applications of the extended Girsanov principle are also developed. Copyright Blackwell Publishers 1998.
Year of publication: |
1998
|
---|---|
Authors: | Elliott, Robert J. ; Madan, Dilip B. |
Published in: |
Mathematical Finance. - Wiley Blackwell, ISSN 0960-1627. - Vol. 8.1998, 2, p. 127-152
|
Publisher: |
Wiley Blackwell |
Saved in:
freely available
Saved in favorites
Similar items by person
-
Stochastic processes, finance and control : a Festschrift in honor of Robert J. Elliott
Cohen, Samuel N., (2012)
-
Incomplete diversification and asset pricing
Madan, Dilip B., (1992)
-
A discrete time equivalent martingale measure
Elliott, Robert J., (1998)
- More ...