A longitudinal model for repeated interval-observed data with informative dropouts
We consider repeated measures interval-observed data with informative dropouts. We model the repeated outcomes via an unobserved random intercept and it is assumed that the probability of dropout during the study period is linearly related to the random intercept in a complementary log-log scale. Assuming the random effect follows the power variance function (PVF) family suggested by Hougaard (2000), we derive the marginal likelihood in a closed form. We evaluate the performance of the maximum likelihood estimation via simulation studies and apply the proposed method to a real data set.
Year of publication: |
2011
|
---|---|
Authors: | Chen, Huichao ; Manatunga, Amita K. |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 81.2011, 2, p. 292-297
|
Publisher: |
Elsevier |
Keywords: | Interval-observed data Informative dropouts Power variance function |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Li, Yingjie, (2011)
-
Zhang, Menghan, (2022)
-
Chen, Huichao, (2012)
- More ...