A machine learning-based early warning system for systemic banking crises
Year of publication: |
2021
|
---|---|
Authors: | Wang, Tongyu ; Zhao, Shangmei ; Zhu, Guangxiang ; Zheng, Haitao |
Published in: |
Applied economics. - New York, NY : Routledge, ISSN 1466-4283, ZDB-ID 1473581-7. - Vol. 53.2021, 26, p. 2974-2992
|
Subject: | early warning system | global forecast | machine learning classifier | Systemic banking crises | Frühwarnsystem | Early warning system | Bankenkrise | Banking crisis | Welt | World | Künstliche Intelligenz | Artificial intelligence | Währungskrise | Currency crisis | Prognoseverfahren | Forecasting model | Systemrisiko | Systemic risk | Prognose | Forecast | Finanzkrise | Financial crisis |
-
The determinants of systemic banking crises : a regulatory perspective
Wosser, Michael, (2015)
-
An early warning system for systemic banking crises : a robust model specification
O'Brien, Martin, (2018)
-
Why have credit variables taken centre stage in predicting systemic banking crises?
Audit, Dooneshsingh, (2021)
- More ...
-
Wang, Tongyu, (2021)
-
Wang, Tongyu, (2023)
-
A mean CVaR-skewness portfolio optimization model based on asymmetric Laplace distribution
Zhao, Shangmei, (2015)
- More ...