A modified CTGAN-plus-features-based method for optimal asset allocation
Year of publication: |
2024
|
---|---|
Authors: | Peña, José-Manuel ; Suárez, Fernando ; Larré, Omar ; Ramírez, Domingo ; Cifuentes, Arturo |
Published in: |
Quantitative finance. - London : Taylor & Francis, ISSN 1469-7696, ZDB-ID 2027557-2. - Vol. 24.2024, 3/4, p. 465-479
|
Subject: | Asset allocation | Contextual information | CTGAN | Features | GAN | Machine learning | Neural networks | Portfolio optimization | Portfolio selection | Synthetic data | Synthetic returns | Portfolio-Management | Neuronale Netze | Theorie | Theory | Kapitalanlage | Financial investment |
-
Stock picking with machine learning
Wolff, Dominik, (2024)
-
Application of machine learning in quantitative investment strategies on global stock markets
Grudniewicz, Jan, (2021)
-
Neural networks and value at risk
Arimond, Alexander, (2020)
- More ...
-
A synthetic data-plus-features driven approach for portfolio optimization
Pagnoncelli, Bernardo K., (2023)
-
Dynamic equilibria in fluid queueing networks
Cominetti, Roberto, (2015)
-
Redroban, Shirley, (2021)
- More ...