A Preference Free Partial Differential Equation for the Term Structure of Interest Rates
The objectives of this paper are twofold: the first is the reconciliation of the differences between the Vasicek and the Heath-Jarrow-Morton approaches to the modelling of term structure of interest rates. We demonstrate that under certain (not empirically unreasonable) assumptions prices of interest-rate sensitive claims within the Heath-Jarrow-Morton framework can be expressed as a partial differential equation which both is preference-free and matches the currently observed yield curve. This partial differential equation is shown to be equivalent to the extended Vasicek model of Hull and White. The second is the pricing of interest rate claims in this framework. The preference free partial differential equation that we obtain has the added advantage that it allows us to bring to bear on the problem of evaluating American style contingent claims in a stochastic interest rate environment the various numerical techniques for solving free boundary value problems which have been developed in recent years such as the method of lines.
Published as: Chiarella, C. and El-Hassan, N., 1996, "A Preference Free Partial Differential Equation for the Term Structure of Interest Rates", Financial Engineering and the Japanese Markets, 3(3), 217-238. Number 63 26 pages