A primal-dual interior-point relaxation method with global and rapidly local convergence for nonlinear programs
Year of publication: |
2022
|
---|---|
Authors: | Liu, Xin-Wei ; Dai, Yu-Hong ; Huang, Ya-Kui |
Published in: |
Mathematical methods of operations research : ZOR. - Berlin : Springer, ISSN 1432-5217, ZDB-ID 1459420-1. - Vol. 96.2022, 3, p. 351-382
|
Subject: | Global and local convergence | Interior-point relaxation method | Logarithmic-barrier problem | Mini-max problem | Nonlinear programming | Smoothing method | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Nichtlineare Optimierung | Globalisierung | Globalization |
-
On the design of R-based scalable frameworks for data science applications
Theußl, Stefan Peter, (2020)
-
Procurement strategy with credit risk
Wang, Hsiao-fan, (2013)
-
Bolte, Jérôme, (2016)
- More ...
-
Preface to the special issue on data-driven optimization
Bian, Wei, (2022)
-
Efficient Projected Gradient Methods for L 0 Constrained Optimization
Xu, FengMin, (2021)
-
A semi-conjugate gradient method for solving unsymmetric positive definite linear systems
Huang, Na, (2022)
- More ...