A Self-Calibrating Method for Heavy Tailed Data Modeling : Application in Neuroscience and Finance
Year of publication: |
2017
|
---|---|
Authors: | Debbabi, Nehla |
Other Persons: | Kratz, Marie (contributor) ; Mboup, Mamadou (contributor) |
Publisher: |
[2017]: [S.l.] : SSRN |
Subject: | Finanzsektor | Financial sector | Neurowissenschaften | Neuroscience | Schätztheorie | Estimation theory | Pareto-Optimum | Pareto efficiency | Algorithmus | Algorithm |
Extent: | 1 Online-Ressource (28 p) |
---|---|
Series: | |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments December 12, 2016 erstellt |
Other identifiers: | 10.2139/ssrn.2898731 [DOI] |
Classification: | C02 - Mathematical Methods |
Source: | ECONIS - Online Catalogue of the ZBW |
-
A self-calibrating method for heavy tailed data modeling : application in neuroscience and finance
Debbabi, Nehla, (2016)
-
Hedging, Pareto Optimality, and Good Deals
Assa, Hirbod, (2011)
-
Bowley vs. Pareto Optima in Reinsurance Contracting
Boonen, Tim J., (2022)
- More ...
-
A self-calibrating method for heavy tailed data modeling : application in neuroscience and finance
Debbabi, Nehla, (2016)
-
Dacorogna, Michel M., (2022)
-
Dacorogna, Michel M., (2023)
- More ...