A semiparametric nonlinear quantile regression model for financial returns
Year of publication: |
Feb 2017
|
---|---|
Authors: | Avdulaj, Krenar ; Barunik, Jozef |
Published in: |
Studies in nonlinear dynamics and econometrics : SNDE ; quarterly publ. electronically on the internet. - Berlin : De Gruyter, ISSN 1558-3708, ZDB-ID 1385261-9. - Vol. 21.2017, 1, p. 81-97
|
Subject: | copula quantile regression | realized volatility | value-at-risk | Regressionsanalyse | Regression analysis | Volatilität | Volatility | Kapitaleinkommen | Capital income | Risikomaß | Risk measure | Theorie | Theory | Nichtparametrisches Verfahren | Nonparametric statistics | Multivariate Verteilung | Multivariate distribution | Schätzung | Estimation | ARCH-Modell | ARCH model |
-
Testing hypotheses on the innovations distribution in semi-parametric conditional volatility models
Francq, Christian, (2023)
-
Semi-parametric conditional quantile models for financial returns and realized volatility
Zikes, Filip, (2016)
-
Discovering intraday tail dependence patterns via a full-range tail dependence copula
Hua, Lei, (2023)
- More ...
-
Avdulaj, Krenar, (2015)
-
AVDULAJ, Krenar, (2013)
-
Avdulaj, Krenar, (2013)
- More ...