Adjoint algorithmic differentiation tool support for typical numerical patterns in computational finance
Year of publication: |
February 2018
|
---|---|
Authors: | Naumann, Uwe ; Du Toit, Jacques |
Published in: |
The journal of computational finance. - London : Infopro Digital Risk, ISSN 1460-1559, ZDB-ID 1433009-X. - Vol. 21.2017/2018, 4, p. 23-57
|
Subject: | adjoint algorithmic differentiation | Monte Carlo method | finite-difference method | adjoints by operator overloading in C++ | implicit functions | preaccumulation | Algorithmus | Algorithm | Theorie | Theory | Monte-Carlo-Simulation | Monte Carlo simulation | Mathematische Optimierung | Mathematical programming | Finanzmathematik | Mathematical finance |
-
Finanzderivate mit MATLAB : mathematische Modellierung und numerische Simulation
Günther, Michael, (2003)
-
Deep asymptotic expansion : application to financial mathematics
Iguchi, Yuga, (2021)
-
Finanzderivate mit MATLAB® : Mathematische Modellierung und numerische Simulation
Günther, Michael, (2010)
- More ...
-
Understanding the South African macro-economy
Barnardt, Nick J., (1992)
-
Predicting the time of the ultimate maximum for Brownian motion with drift
Du Toit, Jacques, (2008)
-
Research methodology : business and management contexts
Bryman, Alan, (2016)
- More ...