An algorithm selection approach for the flexible job shop scheduling problem : choosing constraint programming solvers through machine learning
Year of publication: |
2022
|
---|---|
Authors: | Müller, David ; Müller, Marcus G. ; Kress, Dominik ; Pesch, Erwin |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 302.2022, 3 (1.11.), p. 874-891
|
Subject: | Algorithm selection | Constraint programming | Deep neural networks | Machine learning | Scheduling | Scheduling-Verfahren | Scheduling problem | Künstliche Intelligenz | Artificial intelligence | Neuronale Netze | Neural networks | Algorithmus | Algorithm | Theorie | Theory |
-
Bouška, Michal, (2023)
-
Sharma, Moolchand, (2022)
-
Villeneuve, Yoan, (2022)
- More ...
-
Semiconductor final-test scheduling under setup operator constraints
Kress, Dominik, (2022)
-
A worker constrained flexible job shop scheduling problem with sequence-dependent setup times
Kress, Dominik, (2019)
-
Filter-and-fan approaches for scheduling flexible job shops under workforce constraints
Müller, David, (2022)
- More ...