American Options Based on Malliavin Calculus and Nonparametric Variance Reduction Methods
This paper is devoted to pricing American options using Monte Carlo and the Malliavin calculus. Unlike the majority of articles related to this topic, in this work we will not use localization fonctions to reduce the variance. Our method is based on expressing the conditional expectation E[f(St)/Ss] using the Malliavin calculus without localization. Then the variance of the estimator of E[f(St)/Ss] is reduced using closed formulas, techniques based on a conditioning and a judicious choice of the number of simulated paths. Finally, we perform the stopping times version of the dynamic programming algorithm to decrease the bias. On the one hand, we will develop the Malliavin calculus tools for exponential multi-dimensional diffusions that have deterministic and no constant coefficients. On the other hand, we will detail various nonparametric technics to reduce the variance. Moreover, we will test the numerical efficiency of our method on a heterogeneous CPU/GPU multi-core machine.
Year of publication: |
2011-04
|
---|---|
Authors: | Abbas-Turki, Lokman ; Lapeyre, Bernard |
Institutions: | arXiv.org |
Saved in:
freely available
Saved in favorites
Similar items by person
-
A framework for adaptive Monte-Carlo procedures
Lapeyre, Bernard, (2010)
-
Using Premia and Nsp for Constructing a Risk Management Benchmark for Testing Parallel Architecture
Chancelier, Jean-Philippe, (2010)
-
Convenient Multiple Directions of Stratification
Jourdain, Benjamin, (2010)
- More ...