An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution
Year of publication: |
April 2018
|
---|---|
Authors: | Kang, Zhilin ; Li, Zhongfei |
Published in: |
Mathematical methods of operations research. - Berlin : Springer, ISSN 1432-2994, ZDB-ID 1310695-8. - Vol. 87.2018, 2, p. 169-195
|
Subject: | Portfolio selection | Multiple-risk measures | Distribution ambiguity | Minimum variance portfolio | Robustness | Portfolio-Management | Theorie | Theory | Robustes Verfahren | Robust statistics | Entscheidung unter Unsicherheit | Decision under uncertainty | Risikomaß | Risk measure | Statistische Verteilung | Statistical distribution | Mathematische Optimierung | Mathematical programming | Risikoaversion | Risk aversion | Erwartungsnutzen | Expected utility |
-
Robust portfolio selection with subjective risk aversion under dependence uncertainty
Su, Xiaoshan, (2024)
-
Ambiguity in risk preferences in robust stochastic optimization
Haskell, William B., (2016)
-
Dynamic portfolio optimization with ambiguity aversion
Zhang, Jinqing, (2017)
- More ...
-
Data-driven robust mean-CVaR portfolio selection under distribution ambiguity
Kang, Zhilin, (2019)
-
Robust optimal investment-reinsurance strategies for an insurer with multiple dependent risks
Sun, Jingyun, (2019)
-
Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach
Xie, Shuxiang, (2008)
- More ...