An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter
We consider fractional Brownian motions BtH with arbitrary Hurst coefficients 0<H<1 and prove the following results: (i) An integral representation of the fractional white noise as generalized Wiener integral; (ii) an Itô formula for generalized functionals of BtH; (iii) an analogue of Tanaka's formula; (iv) a Clark-Ocone formula for Donsker's delta function of BtH; (v) an integral representation of the local time of BtH.
Year of publication: |
2003
|
---|---|
Authors: | Bender, Christian |
Published in: |
Stochastic Processes and their Applications. - Elsevier, ISSN 0304-4149. - Vol. 104.2003, 1, p. 81-106
|
Publisher: |
Elsevier |
Keywords: | Fractional Brownian motion Fractional white noise Ito formula Tanaka formula Local time Unified treatment for arbitrary Hurst parameter |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
BSDES With Stochastic Lipschitz Condition
Bender, Christian, (2000)
-
Arbitrage-free interpolation of call option prices
Bender, Christian, (2020)
-
Ansätze zur Bewertung und Risikomessung von Humankapital
Bender, Christian, (2001)
- More ...