Applying independent component analysis and predictive systems for algorithmic trading
Year of publication: |
2019
|
---|---|
Authors: | Ceffer, Attila ; Levendovszky, Janos ; Fogarasi, Norbert |
Published in: |
Computational economics. - Dordrecht [u.a.] : Springer, ISSN 0927-7099, ZDB-ID 1142021-2. - Vol. 54.2019, 1, p. 281-303
|
Subject: | Algorithmic trading | Financial time series | Independent component analysis | Mean reverting portfolio | Neural network | Support vector machine | Algorithmus | Algorithm | Zeitreihenanalyse | Time series analysis | Elektronisches Handelssystem | Electronic trading | Mustererkennung | Pattern recognition | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Theorie | Theory | Aktienindex | Stock index | Finanzanalyse | Financial analysis | Portfolio-Management | Portfolio selection | Schätzung | Estimation |
-
Application of machine learning in algorithmic investment strategies on global stock markets
Grudniewicz, Jan, (2023)
-
Ensembled LSTM with walk forward optimization in algorithmic trading
Chojnacki, Karol, (2023)
-
Application of machine learning in quantitative investment strategies on global stock markets
Grudniewicz, Jan, (2021)
- More ...
-
Trading by estimating the quantized forward distribution
Ceffer, Attila, (2018)
-
Sparse, mean reverting portfolio selection using simulated annealing
Fogarasi, Norbert, (2013)
-
Parallel optimization of sparse portfolios with AR-HMMs
Sipos, I. Róbert, (2017)
- More ...