Asset pricing via the conditional quantile variational autoencoder
Year of publication: |
2024
|
---|---|
Authors: | Yang, Xuanling ; Zhu, Zhoufan ; Li, Dong ; Zhu, Ke |
Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Abingdon : Taylor & Francis, ISSN 1537-2707, ZDB-ID 2043744-4. - Vol. 42.2024, 2, p. 681-694
|
Subject: | Big data | Conditional asset pricing model | Dynamic loadings | Machine learning | Neural networks | Nonlinear quantile factor model | Variational autoencoder | Neuronale Netze | CAPM | Künstliche Intelligenz | Artificial intelligence | Kapitalmarkttheorie | Financial economics | Big Data | Nichtlineare Regression | Nonlinear regression | Prognoseverfahren | Forecasting model | Volatilität | Volatility |
-
Autoencoder asset pricing models
Gu, Shihao, (2021)
-
Deep learning in asset pricing
Chen, Luyang, (2024)
-
Asset returns in deep learning methods : an empirical analysis on SSE 50 and CSI 300
Li, Weiping, (2020)
- More ...
-
Big portfolio selection by graph-based conditional moments method
Zhu, Zhoufan, (2024)
-
Inference for asymmetric exponentially weighted moving average models
Li, Dong, (2019)
-
Non-standard inference for augmented double autoregressive models with null volatility coefficients
Jiang, Feiyu, (2020)
- More ...