Asymptotic incidence energy of lattices
The energy of a graph G arising in chemical physics, denoted by E(G), is defined as the sum of the absolute values of the eigenvalues of G. As an analogue to E(G), the incidence energy IE(G), defined as the sum of the singular values of the incidence matrix of G, is a much studied quantity with well known applications in chemical physics. In this paper, based on the results by Yan and Zhang (2009), we propose the incidence energy per vertex problem for lattice systems, and present the closed-form formulae expressing the incidence energy of the hexagonal lattice, triangular lattice, and 33.42 lattice, respectively. Moreover, we show that the incidence energy per vertex of lattices is independent of the toroidal, cylindrical, and free boundary conditions. In particular, the explicit asymptotic values of the incidence energy in these lattices are obtained by utilizing the applications of analysis approach with the help of calculational software.
Year of publication: |
2015
|
---|---|
Authors: | Liu, Jia-Bao ; Pan, Xiang-Feng |
Published in: |
Physica A: Statistical Mechanics and its Applications. - Elsevier, ISSN 0378-4371. - Vol. 422.2015, C, p. 193-202
|
Publisher: |
Elsevier |
Subject: | Lattice | Energy | Incidence energy | Laplacian spectrum |
Saved in:
Online Resource
Saved in favorites
Similar items by subject
-
Yan, Weigen, (2009)
-
Сходимость и устойчивость в задачах согласования характеристик (обзор базовых результатов)
ПАШАЕВИЧ, АГАЕВ РАФИГ, (2010)
-
Spectral reconstruction of complex networks
Comellas, Francesc, (2008)
- More ...
Similar items by person