Bayesian estimation of the stochastic volatility model with double exponential jumps
Year of publication: |
2021
|
---|---|
Authors: | Li, Jinzhi |
Published in: |
Review of derivatives research. - Dordrecht [u.a.] : Springer Science + Business Media B.V, ISSN 1573-7144, ZDB-ID 2004343-0. - Vol. 24.2021, 2, p. 157-172
|
Subject: | Stochastic volatility | Double exponential jumps | MCMC | Stock indexes | Volatilität | Volatility | Stochastischer Prozess | Stochastic process | Bayes-Statistik | Bayesian inference | Aktienindex | Stock index | Theorie | Theory | Monte-Carlo-Simulation | Monte Carlo simulation | Markov-Kette | Markov chain |
-
Equity index variance : evidence from flexible parametric jump-diffusion models
Kaeck, Andreas, (2017)
-
Flexible modeling of dependence in volatility processes
Kalli, Maria, (2015)
-
Discrete-time stochastic volatility models and MCMC-based statistical inference
Hautsch, Nikolaus, (2008)
- More ...
-
Optimal investment for the insurers in Markov-modulated jump-diffusion models
Li, Jinzhi, (2015)
-
Industrial transfer's effect on competitiveness of the manufacturing : a case of Zhejiang, China
Li, Bingqiang, (2021)
-
Optimal hedge ratios based on Markov-switching dynamic copula models
Li, Jinzhi, (2018)
- More ...