Can Economically Intuitive Factors Improve Ability of Proprietary Algorithms to Predict Defaults of Peer-to-Peer Loans?
Year of publication: |
2017
|
---|---|
Authors: | Kizilaslan, Atay |
Other Persons: | Lookman, Aziz A. (contributor) |
Publisher: |
[2017]: [S.l.] : SSRN |
Subject: | Prognoseverfahren | Forecasting model | Kreditrisiko | Credit risk | Insolvenz | Insolvency | Theorie | Theory |
Extent: | 1 Online-Ressource (34 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments July 21, 2017 erstellt |
Other identifiers: | 10.2139/ssrn.2987613 [DOI] |
Classification: | G21 - Banks; Other Depository Institutions; Mortgages |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Intertemporal Defaulted Bond Recoveries Prediction Via Machine Learning
Nazemi, Abdolreza, (2018)
-
Orlando, Guiseppe, (2020)
-
Macroeconomic impact on expected default frequency
Åsberg, Per, (2008)
- More ...
-
Why Ratings Matter: Evidence from Lehman’s IndexRating Rule Change
Chen, Zhihua, (2010)
-
Why ratings matter : evidence from Lehman's index rating rule change
Chen, Zhihua, (2010)
-
Bank borrowing and corporate risk management
Lookman, Aziz A., (2009)
- More ...