Censored linear regression for case-cohort studies
Right-censored data from a classical case-cohort design and a stratified case-cohort design are considered. In the classical case-cohort design the subcohort is obtained as a simple random sample of the entire cohort, whereas in the stratified design this subcohort is elected by independent Bernoulli sampling with arbitrary selection probabilities. For each design and under a linear regression model, methods for estimating the regression parameters are proposed and analysed. These methods are derived by modifying the linear ranks tests and estimating equations that arise from full-cohort data using methods that are similar to the pseudolikelihood estimating equation that has been used in relative risk regression for these models. The estimators so obtained are shown to be consistent and asymptotically normal. Variance estimation and numerical illustrations are also provided. Copyright 2006, Oxford University Press.
Year of publication: |
2006
|
---|---|
Authors: | Nan, Bin ; Yu, Menggang ; Kalbfleisch, John D. |
Published in: |
Biometrika. - Biometrika Trust, ISSN 0006-3444. - Vol. 93.2006, 4, p. 747-762
|
Publisher: |
Biometrika Trust |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Regression Calibration in Semiparametric Accelerated Failure Time Models
Yu, Menggang, (2010)
-
Regression Calibration in Semiparametric Accelerated Failure Time Models
Yu, Menggang, (2010)
-
Censored Linear Regression for Case-Cohort Studies
Nan, Bin, (2004)
- More ...