Combining long memory and level shifts in modelling and forecasting the volatility of asset returns
Year of publication: |
March 2018
|
---|---|
Authors: | Varneskov, Rasmus Tangsgaard ; Perron, Pierre |
Published in: |
Quantitative finance. - Abingdon [u.a.] : Routledge, ISSN 1469-7688, ZDB-ID 2055458-8. - Vol. 18.2018, 3, p. 371-393
|
Subject: | Forecasting | Kalman filter | Long memory processes | State space modelling | Stochastic volatility | Structural change | Theorie | Theory | Zeitreihenanalyse | Time series analysis | Volatilität | Volatility | Zustandsraummodell | State space model | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Stochastischer Prozess | Stochastic process |
-
Forecasting volatility using realized stochastic volatility model with time-varying leverage effect
Wu, Xinyu, (2020)
-
Nowcasting GDP with a pool of factor models and a fast estimation algorithm
Eraslan, Sercan, (2023)
-
Examining realized volatility regimes under a threshold stochastic volatility model
Xu, Dinghai, (2012)
- More ...
-
Combining long memory and level shifts in modeling and forecasting of persistent time series
Varneskov, Rasmus Tangsgaard, (2011)
-
Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns
Varneskov, Rasmus Tangsgaard, (2011)
-
Bootstrapping laplace transforms of volatility
Hounyo, Ulrich, (2023)
- More ...