Combining long memory and level shifts in modelling and forecasting the volatility of asset returns
Year of publication: |
March 2018
|
---|---|
Authors: | Varneskov, Rasmus Tangsgaard ; Perron, Pierre |
Published in: |
Quantitative finance. - Abingdon [u.a.] : Routledge, ISSN 1469-7688, ZDB-ID 2055458-8. - Vol. 18.2018, 3, p. 371-393
|
Subject: | Forecasting | Kalman filter | Long memory processes | State space modelling | Stochastic volatility | Structural change | Volatilität | Volatility | Zeitreihenanalyse | Time series analysis | Zustandsraummodell | State space model | Prognoseverfahren | Forecasting model | Theorie | Theory | Kapitaleinkommen | Capital income | ARCH-Modell | ARCH model | Stochastischer Prozess | Stochastic process | Strukturbruch | Structural break |
-
Modeling tail risks of inflation using unobserved component quantile regressions
Pfarrhofer, Michael, (2022)
-
Ojeda Cunya, Junior Alex, (2016)
-
Chapter 7 Forecasting with Unobserved Components Time Series Models
Harvey, Andrew, (2006)
- More ...
-
Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns
Varneskov, Rasmus Tangsgaard, (2011)
-
Combining long memory and level shifts in modeling and forecasting of persistent time series
Varneskov, Rasmus Tangsgaard, (2011)
-
Bootstrapping laplace transforms of volatility
Hounyo, Ulrich, (2023)
- More ...