A comparative assessment of machine learning algorithms with the Least Absolute Shrinkage and Selection Operator for breast cancer detection and prediction
Year of publication: |
2023
|
---|---|
Authors: | Hassan, Md. Mehedi ; Hassan, Md. Mahedi ; Yasmin, Farhana ; Khan, Md. Asif Rakib ; Zaman, Sadika ; Galibuzzaman ; Islam, Khan Kamrul ; Bairagi, Anupam Kumar |
Published in: |
Decision analytics journal. - Amsterdam : Elsevier, ISSN 2772-6622, ZDB-ID 3106160-6. - Vol. 7.2023, Art.-No. 100245, p. 1-17
|
Subject: | Breast cancer | Extreme Gradient Boosting | Least Absolute Shrinkage and Selection Operator | Machine learning | Random forest | Support Vector Machine | Krebskrankheit | Cancer | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Mustererkennung | Pattern recognition |
-
Forecasting mid-price movement of bitcoin futures using machine learning
Akyildirim, Erdinc, (2020)
-
Bankruptcy prediction using machine learning techniques
Shetty, Shekar, (2022)
-
Classifying businesses by economic activity using web-based text mining
Roelands, Maarten, (2017)
- More ...
-
Assessing Sustainability of Ecotourism in Bangladesh : A Study on Sundarbans
Hassan, Md. Mehedi, (2022)
- More ...