Computational performance of deep reinforcement learning to find Nash equilibria
| Year of publication: |
2024
|
|---|---|
| Authors: | Graf, Christoph ; Zobernig, Viktor ; Schmidt, Johannes ; Klöckl, Claude |
| Published in: |
Computational economics. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9974, ZDB-ID 1477445-8. - Vol. 63.2024, 2, p. 529-576
|
| Subject: | Bertrand equilibrium | Competition in uniform price auctions | DDPG | Deep deterministic policy gradient algorithm | Parameter sensitivity analysis | Nash-Gleichgewicht | Nash equilibrium | Auktionstheorie | Auction theory | Algorithmus | Algorithm | Mathematische Optimierung | Mathematical programming |
| Description of contents: | Description [link.springer.com] |
-
Mousavi, Seyed Hosein, (2015)
-
Technical note: characterizing and computing the set of nash equilibria via vector optimization
Feinstein, Zachary, (2024)
-
Approximating the set of Nash equilibria for convex games
Feinstein, Zachary, (2025)
- More ...
-
Improvements to Modern Portfolio Theory based models applied to electricity systems
Castro, Gabriel Malta, (2022)
-
Graf, Christoph, (2021)
-
The Effect of Intermittent Renewables on the Electricity Price Variance
Wozabal, David, (2016)
- More ...