Computational performance of deep reinforcement learning to find Nash equilibria
Year of publication: |
2024
|
---|---|
Authors: | Graf, Christoph ; Zobernig, Viktor ; Schmidt, Johannes ; Klöckl, Claude |
Published in: |
Computational economics. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9974, ZDB-ID 1477445-8. - Vol. 63.2024, 2, p. 529-576
|
Subject: | Bertrand equilibrium | Competition in uniform price auctions | DDPG | Deep deterministic policy gradient algorithm | Parameter sensitivity analysis | Nash-Gleichgewicht | Nash equilibrium | Auktionstheorie | Auction theory | Algorithmus | Algorithm | Mathematische Optimierung | Mathematical programming |
Description of contents: | Description [link.springer.com] |
-
Multi-objective optimization methods for allocation and prediction
Ye, Qing Chuan, (2019)
-
Approximately optimal mechanism design
Roughgarden, Tim, (2019)
-
An Algorithm to Solve Nash Equilibrium
Choi, Hak, (2016)
- More ...
-
Improvements to Modern Portfolio Theory based models applied to electricity systems
Castro, Gabriel Malta, (2022)
-
Graf, Christoph, (1989)
-
Parameters of social preference functions : measurement and external validity
Graf, Christoph, (2013)
- More ...