Consumption and performance : understanding longitudinal dynamics of recommender systems via an agent-based simulation framework
Year of publication: |
2020
|
---|---|
Authors: | Zhang, Jingjing ; Adomavicius, Gediminas ; Gupta, Alok ; Ketter, Wolfgang |
Published in: |
Information systems research : ISR. - Catonsville, MD : INFORMS, ISSN 1047-7047, ZDB-ID 1081934-4. - Vol. 31.2020, 1, p. 76-101
|
Subject: | dynamics of recommender systems | agent-based modeling | simulation | consumption strategies | prediction accuracy | consumption diversity | consumption relevance | Agentenbasierte Modellierung | Agent-based modeling | Simulation | Konsumentenverhalten | Consumer behaviour | Personalisierung | Personalization | Privater Konsum | Private consumption | Konsumtheorie | Consumption theory |
-
Consumption modelling using categorisation-enhanced mental accounting
Chudziak, Szymon, (2024)
-
Taming the complexity in search matching : two-sided recommender systems on digital platforms
Malgonde, Onkar, (2020)
-
Zhang, Jingjng, (2019)
- More ...
-
Zhang, Jingjng, (2019)
-
Reeducing recommender system biases : an investigation of rating display designs
Adomavicius, Gediminas, (2019)
-
Classification, ranking, and top-K stability of recommendation algorithms
Adomavicius, Gediminas, (2016)
- More ...