Convexity and solutions of stochastic multidimensional 0-1 knapsack problems with probabilistic constraints
Year of publication: |
May 2016
|
---|---|
Authors: | Yoda, Kunikazu ; Prékopa, András |
Published in: |
Mathematics of operations research. - Catonsville, MD : INFORMS, ISSN 0364-765X, ZDB-ID 195683-8. - Vol. 41.2016, 2, p. 715-731
|
Subject: | stochastic programming | probabilistic constraints | chance constraints | multidimensional 0-1 knapsack problem | convexity | log-concavity | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Stochastischer Prozess | Stochastic process | Ganzzahlige Optimierung | Integer programming | Wahrscheinlichkeitsrechnung | Probability theory |
-
Elçi, Özgün, (2018)
-
Probabilistic optimization via approximate p-efficient points and bundle methods
Ackooij, Wim van, (2017)
-
A branch-and-cut algorithm for chance-constrained multiarea reserve sizing
Cho, Jehum, (2022)
- More ...
-
Uniform quasi-concavity in probabilistic constrained stochastic programming
Prékopa, András, (2011)
-
Improved bounds on the probability of the union of events some of whose intersections are empty
Yoda, Kunikazu, (2016)
-
Uniform quasi-concavity in probabilistic constrained stochastic programming
Prékopa, András, (2011)
- More ...