Cross-Sectional Analyses of Climate Change Impacts
The authors explore the use of cross-sectional analysis to measure the impacts of climate change on agriculture. The impact literature, using experiments on crops in laboratory settings combined with simulation models, suggests that agriculture will be strongly affected by climate change. The extent of these effects varies by country and region. Therefore, local experiments are needed for policy purposes, which becomes expensive and difficult to implement for most developing countries. The cross-sectional technique, as an alternative approach, examines farm performance across a broad range of climates. By seeing how farm performance changes with climate, one can estimate long-run impacts. The advantage of this approach is that it fully captures adaptation as each farmer adapts to the climate they have lived in. The technique measures the full net cost of climate change, including the costs as well as the benefits of adaptation. However, the technique is not concern-free. The four chapters in this paper examine important potential concerns of the cross-sectional method and how they could be addressed, especially in developing countries. Data availability is a major concern in developing countries. The first chapter looks at whether estimating impacts using individual farm data can substitute using agricultural census data at the district level that is more difficult to obtain in developing countries. The study, conducted in Sri Lanka, finds that the individual farm data from surveys are ideal for cross-sectional analysis. Another anticipated problem with applying the cross-sectional approach to developing countries is the absence of weather stations, or discontinued weather data sets. Further, weather stations tend to be concentrated in urban settings. Measures of climate across the landscape, especially where farms are located, are difficult to acquire. The second chapter compares the use of satellite data with ground weather stations. Analyzing these two sources of information, the study reveals that satellite data can explain more of the observed variation in farm performance than ground station data. Because satellite data are readily available for the entire planet, the availability of climate data will not be a constraint. A continuing debate is whether farm performance depends on just climate normals-the average weather over a long period of time-or on climate variance (variations away from the climate normal). Chapter 3 reveals that climate normals ...
Year of publication: |
2013
|
---|---|
Authors: | Mendelsohn, Robert ; Dinar, Ariel ; Basist, Alan |
Other Persons: | Kurukulasuriya, Pradeep (contributor) ; Ihsan Ajwad, Mohamed (contributor) ; Kogan, Felix (contributor) ; Williams, Claude (contributor) |
Publisher: |
Washington, D.C. : World Bank |
Saved in:
freely available
Saved in favorites
Similar items by person
-
Cross-sectional analyses of climate change impacts
Mendelsohn, Robert, (2004)
-
Cross-Sectional Analyses of Climate Change Impacts
Mendelsohn, Robert, (2016)
-
Seo, Sungno Niggol, (2008)
- More ...