Deep learning-based least squares forward-backward stochastic differential equation solver for high-dimensional derivative pricing
Year of publication: |
2021
|
---|---|
Authors: | Liang, Jian ; Xu, Zhe ; Li, Peter |
Published in: |
Quantitative finance. - London : Taylor & Francis, ISSN 1469-7696, ZDB-ID 2027557-2. - Vol. 21.2021, 8, p. 1309-1323
|
Subject: | Bermudan option | Callable yield note (CYN) | Deep neural network (DNN) | Forward-backward stochastic differential equation (FBSDE) | High-dimensional derivative pricing | Least square regression (LSQ) | Optionspreistheorie | Option pricing theory | Stochastischer Prozess | Stochastic process | Derivat | Derivative | Analysis | Mathematical analysis | Regressionsanalyse | Regression analysis | Neuronale Netze | Neural networks | Kleinste-Quadrate-Methode | Least squares method | Schätztheorie | Estimation theory | Optionsgeschäft | Option trading |
-
Chen, Yangang, (2021)
-
Efficient pricing and hedging of high-dimensional American options using deep recurrent networks
Na, Andrew S., (2023)
-
Liang, Jian, (2020)
- More ...
-
Liang, Jian, (2020)
-
Li, Peter, (2012)
-
Bai, Yuntao, (2012)
- More ...