Deep learning models for inflation forecasting
Year of publication: |
[2022]
|
---|---|
Authors: | Theoharidis, Alexandre Fernandes ; Guillén, Diogo Abry ; Lopes, Hedibert Freitas |
Publisher: |
[São Paulo/SP - Brasil] : [Insper] |
Subject: | Deep Learning | Machine Learning | Inflation Forecasting | LSTM Networks | ConvolutionalNetworks | Autoencoders | Prognoseverfahren | Forecasting model | Inflation | Lernprozess | Learning process | Künstliche Intelligenz | Artificial intelligence | Lernen | Learning | Prognose | Forecast | Inflationserwartung | Inflation expectations |
Extent: | 1 Online-Ressource (circa 27 Seiten) Illustrationen |
---|---|
Series: | |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Arbeitspapier ; Working Paper ; Graue Literatur ; Non-commercial literature |
Language: | English |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Using deep (machine) learning to forecast US inflation in the COVID-19 era
Stoneman, David, (2024)
-
França, Vinícius Fellype Cavalcanti de, (2024)
-
Benchmarking short term forecasts of regional banknote lodgements and withdrawals
Sonnleitner, Benedikt, (2024)
- More ...
-
ExpectativasDesagregadas, Credibilidade do Banco Central e Cadeias de Markov
Guillén, Diogo Abry, (2011)
-
An organizational structure approach to price setting and monetary policy
Guillén, Diogo Abry, (2022)
-
International macroeconomic vulnerability
Velloso, Joao, (2022)
- More ...