Deep learning with long short-term memory networks for financial market predictions
Year of publication: |
Wednesday 10th May, 2017
|
---|---|
Authors: | Fischer, Thomas ; Krauss, Christopher |
Publisher: |
Erlangen-Nürnberg : Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Economics |
Subject: | Finance | statistical arbitrage | LSTM | machine learning | deep learning | Künstliche Intelligenz | Artificial intelligence | Finanzmarkt | Financial market | Lernprozess | Learning process | Prognoseverfahren | Forecasting model | Lernen | Learning | Theorie | Theory |
Extent: | 1 Online-Ressource (circa 33 Seiten) Illustrationen |
---|---|
Series: | FAU discussion papers in economics. - Erlangen : FAU, ISSN 1867-6707, ZDB-ID 2851451-8. - Vol. no. 2017, 11 |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Arbeitspapier ; Working Paper ; Graue Literatur ; Non-commercial literature |
Language: | English |
Other identifiers: | hdl:10419/157808 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Deep learning with long short-term memory networks for financial market predictions
Fischer, Thomas, (2018)
-
On the stability of machine learning models : measuring model and outcome variance
Dhar, Vasant, (2020)
-
Machine learning advances for time series forecasting
Masini, Ricardo P., (2023)
- More ...
-
Deep learning with long short-term memory networks for financial market predictions
Fischer, Thomas, (2017)
-
Machine learning for time series forecasting - a simulation study
Fischer, Thomas, (2018)
-
Machine learning in futures markets
Waldow, Fabian, (2021)
- More ...