Depth-based support vector classifiers to detect data nests of rare events
Year of publication: |
2021
|
---|---|
Authors: | Dyckerhoff, Rainer ; Stenz, Hartmut Jakob |
Published in: |
International journal of computational economics and econometrics : IJCEE. - Genève [u.a.] : Inderscience Enterprises, ISSN 1757-1189, ZDB-ID 2545120-0. - Vol. 11.2021, 2, p. 107-142
|
Subject: | data depth | DD-plot | Mahalanobis depth function | support vector machines | SVM | binary classification | hybrid methods | rare events | data nest | churn prediction | big data | Mustererkennung | Pattern recognition | Prognoseverfahren | Forecasting model | Data Mining | Data mining | Big Data | Big data | Klassifikation | Classification | Theorie | Theory | Statistische Methode | Statistical method |
-
Predictive analytics with strategically missing data
Zhang, Juheng, (2020)
-
A multi-level text classifier for feedback analysis using tweets to enhance product performance
Balusamy, Balamurugan, (2015)
-
Interpretable support vector machines for functional data
Martin-Barragan, Belen, (2014)
- More ...
-
Checking for orthant orderings between discrete multivariate distributions: An algorithm
Dyckerhoff, Rainer, (1998)
-
Dyckerhoff, Rainer, (1994)
-
Orthant orderings of discrete random vectors
Dyckerhoff, Rainer, (1995)
- More ...