Detecting accounting fraud in companies reporting under US GAAP through data mining
Year of publication: |
2022
|
---|---|
Authors: | Papík, Mário ; Papíková, Lenka |
Published in: |
International journal of accounting information systems. - Amsterdam [u.a.] : Elsevier, ISSN 1467-0895, ZDB-ID 2211804-4. - Vol. 45.2022, p. 1-19
|
Subject: | Accounting fraud | Beneish model | Data mining | Financial statement | Fraud prediction | Machine learning | US GAAP | Bilanzdelikt | Data Mining | Bilanzierungsgrundsätze | Accounting standards | Betrug | Fraud | Künstliche Intelligenz | Artificial intelligence | Jahresabschluss | Rechnungswesen | Accounting | Bilanzanalyse | Financial statement analysis |
-
Identification of fraudulent financial statements through a multi-label classification approach
Tragouda, Maria, (2024)
-
Fraud detection for financial statements of business groups
Chen, Yuh-Jen, (2019)
-
Enhancing fraud detection in banking using advanced machine learning techniques
Detthamrong, Umawadee, (2024)
- More ...
-
Application of selected data mining techniques in unintentional accounting error detection
Papík, Mário, (2021)
-
Comprehensive analysis of regulatory impacts on performance of Slovak pension funds
Papík, Mário, (2021)
-
Papíková, Lenka, (2024)
- More ...