Discrete-response state space models with conditional heteroscedasticity : an application to forecasting the federal funds rate target
Year of publication: |
May 2017
|
---|---|
Authors: | Dimitrakopoulos, Stefanos ; Dey, Dipak |
Published in: |
Economics letters. - Amsterdam [u.a.] : Elsevier, ISSN 0165-1765, ZDB-ID 717210-2. - Vol. 154.2017, p. 20-23
|
Subject: | Conditional heteroscedasticity | Markov chain Monte Carlo | Discrete responses | State-space model | Theorie | Theory | Zustandsraummodell | State space model | ARCH-Modell | ARCH model | Markov-Kette | Markov chain | Heteroskedastizität | Heteroscedasticity | Monte-Carlo-Simulation | Monte Carlo simulation | Prognoseverfahren | Forecasting model | Geldpolitik | Monetary policy | Geldmarkt | Money market |
-
Ordinal-response GARCH models for transaction data : a forecasting exercise
Dimitrakopoulos, Stefanos, (2019)
-
Threshold stochastic volatility : properties and forecasting
Mao, Xiuping, (2017)
-
Likelihood-based analysis for dynamic factor models
Jungbacker, Borus, (2008)
- More ...
-
Periodic autoregressive conditional duration
Aknouche, Abdelhakim, (2021)
-
Dimitrakopoulos, Stefanos, (2017)
-
Ordinal-response GARCH models for transaction data : a forecasting exercise
Dimitrakopoulos, Stefanos, (2019)
- More ...