Does the Quantile Regression Forest Learn More Information on Chinese Systemic Risk?
Year of publication: |
2020
|
---|---|
Authors: | Duan, Yuejiao |
Other Persons: | Fan, Xiaoyun (contributor) ; Li, Haoran (contributor) |
Publisher: |
[2020]: [S.l.] : SSRN |
Subject: | China | Regressionsanalyse | Regression analysis | Systemrisiko | Systemic risk | Forstwirtschaft | Forestry | Theorie | Theory |
Extent: | 1 Online-Ressource (34 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments March 18, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3556400 [DOI] |
Classification: | G10 - General Financial Markets. General ; E37 - Forecasting and Simulation ; C53 - Forecasting and Other Model Applications ; c55 |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Density forecasts of inflation : a quantile regression forest approach
Lenza, Michele, (2023)
-
Density Forecasts of Inflation : A Quantile Regression Forest Approach
Lenza, Michele, (2023)
-
Quantifying financial stability trade-offs for monetary policy : a quantile VAR approach
Chavleishvili, Sulkhan, (2023)
- More ...
-
Economic Policy Uncertainty and Bank Systemic Risk : A Cross-Country Analysis
Duan, Yuejiao, (2022)
-
Financial market sentiment and stock return during the COVID-19 pandemic
Bai, Chenjiang, (2023)
-
Economic policy uncertainty and bank systemic risk : a cross-country analysis
Duan, Yuejiao, (2022)
- More ...